If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+156X+156=0
a = 1; b = 156; c = +156;
Δ = b2-4ac
Δ = 1562-4·1·156
Δ = 23712
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{23712}=\sqrt{16*1482}=\sqrt{16}*\sqrt{1482}=4\sqrt{1482}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(156)-4\sqrt{1482}}{2*1}=\frac{-156-4\sqrt{1482}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(156)+4\sqrt{1482}}{2*1}=\frac{-156+4\sqrt{1482}}{2} $
| 13n=18n | | 2c-15=7c-25 | | x=180°-(50°+115°) | | -6-8y=34 | | 3.9+10m=8.31 | | 10x+18=110 | | ∣23x−4∣∣∣+11=3 | | 7/2y-14=-7 | | 3|x−4|−4=8 | | 6−1+6x=2x−x+5 | | 3(12-3y)+9y=36 | | -6(4-r)=18-24-6r=18-6r=42r=-7 | | (2x+3)+5=x+2 | | (2x+3)5=x+2 | | w×2+(22×2)=120 | | 9.2(x-3.25)=-27.6 | | 3*3x-4=1/4-32x+56 | | 13/3y-14=-1 | | .2x=16000 | | 4(3x+5)=-31+15 | | -11+23=-4(x+7) | | .2x=210000 | | (5(3-z))/(4)=-z | | M1= 1/2(37x+5-23x-5) | | 2+4=-2(6x-3) | | 4(3x+5)=-11+7 | | 6c+2/7=2 | | 2m+36=7m-4 | | 4/5k-2(k+3)=-24 | | 1/5x-1=-11/20x-8 | | -(-5x-1)=13 | | (2+v)(3v+8)=0 |